Crystal structure of Tritrichomonas foetus inosine-5'-monophosphate dehydrogenase and the enzyme-product complex.

نویسندگان

  • F G Whitby
  • H Luecke
  • P Kuhn
  • J R Somoza
  • J A Huete-Perez
  • J D Phillips
  • C P Hill
  • R J Fletterick
  • C C Wang
چکیده

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the committed step in de novo guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetus in the apo form at 2.3 A resolution and the enzyme-XMP complex at 2.6 A resolution. Each monomer of this tetrameric enzyme is comprised of two domains, the largest of which includes an eight-stranded parallel beta/alpha-barrel that contains the enzyme active site at the C termini of the barrel beta-strands. A second domain, comprised of residues 102-220, is disordered in the crystal. IMPDH is expected to be active as a tetramer, since the active site cavity is formed by strands from adjacent subunits. An intrasubunit disulfide bond, seen in the crystal structure, may stabilize the protein in a less active form, as high concentrations of reducing agent have been shown to increase enzyme activity. Disorder at the active site suggests that a high degree of flexibility may be inherent in the catalytic function of IMPDH. Unlike IMPDH from other species, the T. foetus enzyme has a single arginine that is largely responsible for coordinating the substrate phosphate in the active site. This structural uniqueness may facilitate structure-based identification and design of compounds that specifically inhibit the parasite enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tritrichomonas foetus: a strategy for structure-based inhibitor design of a protozoan inosine-5'-monophosphate dehydrogenase.

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the NAD-dependent oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the committed step in guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetu...

متن کامل

Inosine 5 0 - Monophosphate Dehydrogenase

I. Overview of IMPDH A. Protein Structures II. Medicinal Applications of IMPDH Inhibitors A. IMP Analogs B. NAD Analogs C. Natural Product Inhibitors D. Novel Synthetic Inhibitors III. Kinetic Mechanism and Substrate Interactions A. Case Studies 1. Tritrichomonas foetus IMPDH 2. Escherichia coli IMPDH 3. Human IMPDH B. Ligand Binding 1. IMP Binding Site 2. NAD Binding Site IV. Chemical Mechanis...

متن کامل

Crystal structure of Tritrichomonas foetus inosine monophosphate dehydrogenase in complex with the inhibitor ribavirin monophosphate reveals a catalysis-dependent ion-binding site.

Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in GMP biosynthesis. The resulting intracellular pool of guanine nucleotides is of great importance to all cells for use in DNA and RNA synthesis, metabolism, and signal transduction. The enzyme binds IMP and the cofactor NAD(+) in random order, IMP is converted to XMP, NAD(+) is reduced to NADH, and finally, NADH and ...

متن کامل

Crystal structures of Tritrichomonasfoetus inosine monophosphate dehydrogenase in complex with substrate, cofactor and analogs: a structural basis for the random-in ordered-out kinetic mechanism.

The enzyme inosine monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide biosynthesis. Because it is up-regulated in rapidly proliferating cells, human type II IMPDH is actively targeted for immunosuppressive, anticancer, and antiviral chemotherapy. The enzyme employs a random-in ordered-out kinetic mechanism where substrate or cofactor can bind fir...

متن کامل

Inosine 5'-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo.

Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides. In addition to the catalytic domain, IMPDH contains a subdomain of unknown function composed of two cystathione beta-synthase domains. Our results, using three different assays, show that IMPDHs from Tritrichomonas foetus, Escherichia coli, and both human isoforms bind ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 35  شماره 

صفحات  -

تاریخ انتشار 1997